My blog is using Kramdown markdown converter. Since Kramdown supports MathJax , you can do PNG rendering using Latex syntax. In plain words, you can put fancy math expressions like this in your blog using LaTex syntax.
How to enable MathJax
Put following tag in your HTML file.<script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
In my case I put it in index.html
and _layouts/default.thml
.
In index.html
, change { post.content | strip_html | truncatewords: 50 }
to { post.content | truncatewords: 50 }
This step might be necessary if it does not work yet: add mathjax: true
under # Build settings
in your _config.yml
file.
Reference
Examples
Symbols Frequently Used in Proofs
$$ A \ , \ alpha \ , B \ , \ beta \ , \ Gamma \ , \ gamma \ , E \ , \ epsilon \ , \ Pi \ , \ pi \ , \ Sigma \ , \ sigma $$
Note 1. Unlike conventional LaTex, we should use normal alphabet when possible, like .
Note 2. \,
means a space.
$$ \ exists , \ forall , \ neg , \ lor , \ land , \ to , \ leftrightarrow , \ implies , \ iff , \ therefore , \ because $$
Set theory
$$ \ emptyset , \ mathbb { N }, \ mathbb { Z }, \ mathbb { Q }, \ mathbb { R } $$
$$ \ { 2 , 4 , 6 , 8 \ dots \ } $$
$$ \ { x \ mid x \ text { is positive and even } \ } $$
$$ \ subset , \ supset , \ not \ subset , \ not \ supset , \ subseteq , \ supseteq , \ nsubseteq , \ nsupseteq $$
$$ ( A \ cup B ) \ cap C \ in D \ subset E$$
$$ \ bigcup_ { i = 1 } ^ { \ infty } F_ { i } $$
$$ ( F \ circ G )( x ) \ , means \ , x \ overset { F \ circ G }{ \ mapsto } y $$
Algebra
$$ x = { - b \ pm \ sqrt { b ^ 2 - 4 ac } \ over 2 a } $$
$$ \ cos ( θ + φ ) = \ cos ( θ ) \ cos ( φ ) −\ sin ( θ ) \ sin ( φ ) $$
$$ \ sigma = \ sqrt { \ frac { 1 }{ N } \ sum_ { i = 1 } ^ N ( x_i - \ mu ) ^ 2 } $$
$$ \ mathbf { X } = \ mathbf { Z } \ mathbf { P ^ \ mathsf { T }} $$
$$ \ mathbf { X } \ _ { n , p } = \ mathbf { A } \ _ { n , k } \ mathbf { B } \ _ { k , p } $$
$$ \ mathsf { Data = PCs } \ times \ mathsf { Loadings } $$
$$ E = \ frac { mc ^ 2 }{ \ sqrt { 1 - \ frac { v ^ 2 }{ c ^ 2 }}} $$
$$
\ begin { align * }
& \ phi ( x , y ) = \ phi \ left ( \ sum_ { i = 1 } ^ n x_ie_i , \ sum_ { j = 1 } ^ n y_je_j \ right )
= \ sum_ { i = 1 } ^ n \ sum_ { j = 1 } ^ n x_i y_j \ phi ( e_i , e_j ) = \ \
& ( x_1 , \ ldots , x_n ) \ left ( \ begin { array }{ ccc }
\ phi ( e_1 , e_1 ) & \ cdots & \ phi ( e_1 , e_n ) \ \
\ vdots & \ ddots & \ vdots \ \
\ phi ( e_n , e_1 ) & \ cdots & \ phi ( e_n , e_n )
\ end { array } \ right )
\ left ( \ begin { array }{ c }
y_1 \ \
\ vdots \ \
y_n
\ end { array } \ right )
\ end { align * }
$$
Calculus
$$ f ( a ) = \ frac { 1 }{ 2 \ pi i } \ oint \ frac { f ( z )}{ z - a } dz $$
$$ \ int_D ({ \ nabla \ cdot } F ) dV = \ int_ { \ partial D } F \ cdot ndS $$
$$ \ vec { \ nabla } \ times \ vec { F } = \ left ( \ frac { \ partial F_z }{ \ partial y } - \ frac { \ partial F_y }{ \ partial z } \ right ) \ mathbf { i } + \ left ( \ frac { \ partial F_x }{ \ partial z } - \ frac { \ partial F_z }{ \ partial x } \ right ) \ mathbf { j } + \ left ( \ frac { \ partial F_y }{ \ partial x } - \ frac { \ partial F_x }{ \ partial y } \ right ) \ mathbf { k } $$
$$ ( \ nabla_X Y ) ^ k = X ^ i ( \ nabla_i Y ) ^ k = X ^ i \ left ( \ frac { \ partial Y ^ k }{ \ partial x ^ i } + \ Gamma_ { im } ^ k Y ^ m \ right ) $$
$$ \ int_D ({ \ nabla \ cdot } F ) dV = \ int_ { \ partial D } F \ cdot nd S $$
Embedded in sentence
When , there are two solutions to and they are
When $$a \ ne 0 $$ , there are two solutions to $$ax ^ 2 + bx + c = 0 $$
and they are $$x = { - b \ pm \ sqrt { b ^ 2 - 4 ac } \ over 2 a }. $$