Using Math Expressions in Your Jekyll Blog
by Choong-il Ryu
My blog is using Kramdown markdown converter. Since Kramdown supports MathJax, you can do PNG rendering using Latex syntax. In plain words, you can put fancy math expressions like this in your blog using LaTex syntax.
How to enable MathJax
- Put following tag in your HTML file.
<script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
In my case I put it inindex.html
and_layouts/default.thml
. - In
index.html
, change{ post.content | strip_html | truncatewords: 50 }
to{ post.content | truncatewords: 50 }
- This step might be necessary if it does not work yet: add
mathjax: true
under# Build settings
in your_config.yml
file.
Reference
- MathJax
- MathJax Samples
- Kramdown Math Blocks
- Use Maruku instead of Kramdown - note that Kramdown replaced Maruku in the latest Jekyll version.
- List of Latex symbols
Examples
Symbols Frequently Used in Proofs
$$ A\,\alpha\,B\,\beta\,\Gamma\,\gamma\,E\,\epsilon\,\Pi\,\pi\,\Sigma\,\sigma $$
Note 1. Unlike conventional LaTex, we should use normal alphabet when possible, like .
Note 2. \,
means a space.
$$ \exists,\forall,\neg,\lor,\land,\to,\leftrightarrow,\implies,\iff,\therefore,\because $$
Set theory
$$ \emptyset,\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R} $$
$$\{2, 4, 6, 8\dots\}$$
$$\{x \mid x \text{ is positive and even}\}$$
$$ \subset, \supset, \not \subset, \not \supset, \subseteq,\supseteq,\nsubseteq,\nsupseteq $$
$$(A \cup B) \cap C \in D \subset E$$
$$\bigcup_{i=1}^{\infty} F_{i}$$
$$(F\circ G)(x)\,means\,x \overset{F\circ G}{\mapsto} y $$
Algebra
$$ x = {-b \pm \sqrt{b^2-4ac} \over 2a} $$
$$ \cos(θ+φ)=\cos(θ)\cos(φ)−\sin(θ)\sin(φ) $$
$$ \sigma = \sqrt{ \frac{1}{N} \sum_{i=1}^N (x_i -\mu)^2} $$
$$ \mathbf{X} = \mathbf{Z} \mathbf{P^\mathsf{T}} $$
$$ \mathbf{X}\_{n,p} = \mathbf{A}\_{n,k} \mathbf{B}\_{k,p} $$
$$ \mathsf{Data = PCs} \times \mathsf{Loadings} $$
$$ E = \frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}} $$
$$
\begin{align*}
& \phi(x,y) = \phi \left(\sum_{i=1}^n x_ie_i, \sum_{j=1}^n y_je_j \right)
= \sum_{i=1}^n \sum_{j=1}^n x_i y_j \phi(e_i, e_j) = \\
& (x_1, \ldots, x_n) \left( \begin{array}{ccc}
\phi(e_1, e_1) & \cdots & \phi(e_1, e_n) \\
\vdots & \ddots & \vdots \\
\phi(e_n, e_1) & \cdots & \phi(e_n, e_n)
\end{array} \right)
\left( \begin{array}{c}
y_1 \\
\vdots \\
y_n
\end{array} \right)
\end{align*}
$$
Calculus
$$ f(a) = \frac{1}{2\pi i} \oint\frac{f(z)}{z-a}dz $$
$$ \int_D ({\nabla\cdot} F)dV=\int_{\partial D} F\cdot ndS $$
$$ \vec{\nabla} \times \vec{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) \mathbf{i} + \left( \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) \mathbf{j} + \left( \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) \mathbf{k} $$
$$ (\nabla_X Y)^k = X^i (\nabla_i Y)^k = X^i \left( \frac{\partial Y^k}{\partial x^i} + \Gamma_{im}^k Y^m \right) $$
$$ \int_D ({\nabla\cdot} F)dV=\int_{\partial D} F\cdot nd S $$
Embedded in sentence
When , there are two solutions to and they are
When $$a \ne 0$$, there are two solutions to $$ax^2 + bx + c = 0$$
and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
Subscribe via RSS